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TECHNICAL NOTE L350

THEORETICAL DISTRIBUTIOR OF LAMINAR-BOUNDARY-LAYER
THICKNESS, BOUNDARY-LAYER REYNOLDS NUMBER AND
STABILITY LIMIT, AND ROUGHNESS REYNOLDS
NUMBER FOR A SPHERE AND DISK IN
INCOMPRESSIBLE FLOW

By Neal Tetervin
SUMMARY

The laminar-boundary-layer thickness, the boundary-layer Reynolds
number and minimum critical Reynolds number, and the roughness Reynolds
number have been calculated by an approximate method for a sphere and
disk in the supercritical Reynolds number region. The calculations for
the sphere show that the boundary leyer at the stagnation point of a
sphere 1is much thicker than that on an airfoil, that the boundary-layer
thickness increases very slowly with an increase in distance from the
stagnation point, that the boundary layer over the forward portion of a
sphere 1s highly stable at large Reynolds numbers with respect to the
Tollmien-Schlichting type of waves, and that roughness of a glven height
produces the largest roughness Reynolds numbers st sbout 57° from the
stagnation point. The calculations for the disk show the unusuzl result
that the boundary-layer thickness is greatest at the stagnation point
end decreases with an increase in distance from this point, that the
boundary layer is extremely stable with respect to the Tollmien-
Schlichting type of waves, and that roughness of a given height produces
a given roughness Reynolds number over a smaller portion of the disk
surface than over the sphere surface.

INTRODUCTION

In connection with an experimental subsonic-speed investigation
undertaken recently at the lLangley Aeronautical Laboratory of the transi-
tion from laminar to turbulent flow on a sphere at a Reynolds number of

b7 x 106, based on a radius of 60 inches, the thickness of the laminar
boundary layer, its stability, and the roughness Reynolds numbers for
various-sized roughness particles were calculeted by approximate methods
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for incompressible flow. In additlion to the calculations for a sphere,
calculations were also made for a much blunter body, namely, for a disk
with a radius of 60 inches perpendicular to the flow at a Reynolds number

of 4.7 % 106.

Some time after the calculatlions were completed it waes discovered
that measured transilition positlions on a 9-inch-radius sphere had heen

reported in reference 1 up to a Reynolds number of 1.75 X 106, based on
the radius. Celculated distributions of the boundary-layer momentum
thickness over the forward portion of the sphere for six Reynolds numbers

between 0.5 X 106 ana 3 X lO6 as well as the position of the neutral-

stabllity point up to a Reynolds number of 3 X 106 were also presented
in reference 1.

In the present paper the calculated dlstribution of the boundary-
layer momentum thickness over the forward portion of a sphere 1s pre-
sented in the form of a single nondimensional curve that ajlows the
thickness at any Reynolds number to be obtained wilth almost no calcula-~
tion. The calculated boundary-layer Reynolds numbers at any velue of
the sphere Reynolds number can also be readily obtained from & single
curve. The distribution of the minimum critical Reynolds number on the
sphere, which is Iindependent of the sphere Reynolds number, 1s presented
as well as the location of the neutral-stability point for Reynolds num-

bers up to 1,000 X 106. Finally, the diatribution over the sphere of a
nondimensional roughness parameter that allows the roughness Reynolds
number to be quickly calculated for any small roughness height at any
value of the sphere Reynolds number is shown in the form of a single
curve.

The calculated results are for the supercritical Reynoclds number
range, that is, for the range in which the final separation of the bound-
ary layer on the sphere is that of the turbulent boundary layer. In this
renge the pressure distributlion over the forward portion of the sphere is
almost independent of the Reynolds number, and, thus, the present calcula-
tions are good epproximations for any sphere at any supercritical Reynolds
number.

Most of the calculated quantities presented for the sphere are also
presented in the same form for the disk. :

SYMBOLS

a,A,b,C,4,e constants

c reference length, radius of sphere or disk
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F! velocity ratio, u/U (eq. (15) of ref. 2)
£ =D
wu
e __ Fullat
1775\
g=F
1
h = E
¢
E height of roughness particle
K - Schlichting velocity-profile shape parameter
_ 8P4 _ ., au
k=s—>=2 =
vV é&x ax

R, reference Reynolds number, ﬁ;ﬁ/?
Ry, roughness Reynolds number, Ghﬁ/;
_bs
Ry = 5
RB c minimm critical Reynolds number, value of Re at which a
’ small disturbance is nelther damped nor amplified
r=Z
c
r perpendicular distance from point on surface of body of
revolution to axis of symmetry
U=—U_ -
ﬁw
U velocity at outer edge of boundary layer and in direction of

X



L NACA TN 4350

ﬁm free-stream velocity
u=d
U

>}
u velocity inside boundary layer and in direction of X
ﬁh velocity at ¥ = B with roughness particle absent
Vw.:?

U
Gw velocity through surface, posltive outward
x = £ (For a sphere, X/ 1s equasl to the angle in radians from the

c stagnation point)
AX increment in x
Xq initial station of x
X distance along surface, measured from stagnation polnt
Y . nondimensional distance from surface (ref. 2)

=
Y ==
y distance normael to surface, positive outward
_ a2
Z =29 Rc
B wedge=-angle parameter
Bl=Zr2
% _ —%J .

3] displacement thickness, 5—/c

- [y

measure of boundary-layer thickness (ref. 3)
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8 momentum thickness, &/c
- © -

- Jo 8- B

Tt viscosity of fluid

v kinemstic viscosity, p/p
p density of fluid

;w surface shearing stress
Subscripts:

a actual

a disk

(o} initial point

P plate

t stagnation point

th theoretical

w surface

Barred quantities are dimensionsal.

ANATYSTS AND DISCUSSION

Sphere

The boundary-layer characteristics for a sphere were calculated by
use of the modified Schlichting method (ref. 4) which was altered to
apply to & body of revolution. (See ref. 3 for the original method.)
The change from the method for two-dimensional flow consists 1n using
the momentum equation for a body of revolution instead of the momentum
equation for two-dimensional flow. The momentum equation for the flow
over a body of revolution (see ref. 5) is



al _
=2 .= 2 {. Uec
k:L.@::(g w2 lp -z dU <z=ean)
¥y dx g ax v dx ¢ c
(o4
k. =-__y._6.=-iy_§:?;§.=-veR =fﬁ
177y g e v wie © L

from reference %4 are introduced into equation (1), the result is

*
az _ 2 o) 22 dr
Introducing the quentity [31 = Zr2 into equation (2) glves
gy _ or? 5"
——l I - - S—
dx U [f g! k(e M (3)

In order to find Bl(x), equation (3) can be written as

Bl=2j;x1£}_2%_ﬁ_k(2+§;)]dx+ Bl,o (&)

where [31 ° = 0 Dbecause Bl = Zr2; and at x = 0 the quantity Z is
J
finite and r = 0.
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In order to integrate equation (4), Simpson's rule (see ref. 6) was
used to obtaln

e+ S5({ 26 )
By = (B1)xeoax * =5 U[f T Gy +
X~-2A%
r2 5" re ( 5
2P - - —_ + 4=If - - k|2 + =
bitie -k k(2+e) = ky e) (5)
X=-AX X
Equation (5) can be solved by iteration; the first approximation for
re 5%
the expression Tf'f - kl - kl2 + 'y is obtained by extrepolation of

X
B; from the values at smaller values of x. Near the stagnation point,

sufficient values for applying this method of integratlon are obtained by
the process described in the immedistely following paragrsph. When Bl

and, thus, 2 are known at any value of x, the quantitles £, k3, k,

and 8*/9 at that value of x can be calculated or read from charts.
- (See refs. 3 and k.)

In order to begin the integration at the stagnation polnt, equa-
tion (2) is written as

*
dz _ 2 3] ZU dar
— ==4lf -k = kl2+ =]} - = — 6
de[ 1 ( B)J T dx (6)
and use is made of the fact that, near the stagnation point, r = x and
_ fdau ZU ar
U= (Ei)tx' The term T o= in equation (6) then becomes
Z(éU X

BE- @), - [ @)

or

R

e (8,8
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Equation (6) can then be written as

dz) (au
P A B L

which, upon noting that U = G%%) x near x = 0, gives
t

3(%3%‘) = U E[f-kl-k(“%f)'- ;I (7)
t

x=0

Because U =0 at x =0, it is necessary that

|:-kl'_k<3+%t):lt=o (8)

in order that (QZ-) be finite.
ax /g

Equation (8) together with the relation

g (K+1) -k - k=0 (9)

from reference 4 can be used to determine the initial values of K, Kk,

du
and kl when vw,t’ (a§>t’ and R, are known by the same method used

for two-dimensional flow in reference 4. The quantity K is the param-
eter that determines the shape of the velocity profile; g 1is a ratio

of two boundary-layer thicknesses and depends on K only. In the present
calculations kj = O, and, thus, equations (8) and (9) reduce to

[gZ(K + 1) (3 + %f) - ]t =0 (10)

Because f, g, and 6*16 depend only on the velocity-proflle shape
perameter K, equation (10) can be solved numerically for Kt and the

value of ki can then be calculated from equation (9) with X; = 0. The
results are

K, = ~0.72542
ki = 0.05299

&
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The initial values of Ki and kt are, thus, known; for the present
case f; =0 and, therefore, either K; or ki 1is sufficient to deter-
- mine K, £, aﬁe,mm g

Tn order to begin the integration of equstion (&), it is useful to
know how Bl veries near x = 0. This variation is obtained from equa-

tion (3) together with r =x, U= (%%) X, and the fact that £, Kk,
t

k, and 8*/6 are finite. Then, it follows from equation (3) that

a

ﬁl =0 at x =0. The second derivative Bl
dx dax
be easily calculated; thus, near x = O equation (3) becomes

2 difion o ¥)

aﬁ x =0 can also

Then,
2 * > &
v af = .2x_|of _ (? + §_) -k —0 |3k _
ax2 (911_1) ok 8 3k |dx
ax /¢
=}
2x T bf-lﬁkl 2 [ ]
(sﬂ) Lk 3k, alidx (dU) £-X - k(2+ )
ax /¢, t
or
dzﬁ *
1) - __2 - - 5
(E;E_)t %g) l% kl k(? + e‘ﬂ
t t
5551
In order to obtain |—— note that
3%’
t
2 2
6531) 1 L B Rl
d_x3 £ X~30 x d.X2 dx2 £
i - <d551> ax 9k
e result obtained i8 | ———] =0 for — =— =0 at x =0, which
dx dx dx
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follows from the restrictions = = =0 at x = c.

Then, near x = 0,

dﬁl) %81\ 2 py\ 3
e (B ) B i
t

t
3
or, because B = (EEL) = E—El = 0,
_ 1,t dx /i dxd %
2 *
B, = (;g) [f -k - k(2 + v)]t + (Error) O[x] (11)
ax/¢

The calculation of g7 1s begun by making use of equation (11) and is
continued by use of equation (5) together with the relations U = % sin x

and r = sin x. (See p. 417 of ref. T.)
B
The quantity Z is obtained from B, by the relation 2 = -%
r

which follows from the definition of ﬁl. By using the definition

k=2 %E, equation (11), the relation 2 = 3 where r = x, and equaw~

2
r
tion (8), the subsequent relation results at the stagnation point:
k.t
= 12
% = 735 (12)
ax /g

All the calculations were made for a velocity distribution outside the
boundary layer given by U = % sin x,. the potential-flow veloclty dis-

tribution for a sphere. A comparisdh of the velocity distribution given
by the expression U = % 8in x with the measured velocity distributions

(ref. 8) for the so-called supercriticel range of Reynolds numbers shows

that the expression U = % sin x 1is 8 good approximation for the experi-

mental velocity distribution for most of the forward portion of the sphere
and can be coneidered as the limiting distiribution for the experimentsl
velocity distributions.
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The calculated variation of -%{E; (or VZ) with %/ is shown
in figure 1. The presentation of the results in the form of %{ﬁ;‘ plotted
é

against i/E ensbles the boundary-layer momentum thickness to be easily
calculated for o sphere of any size and at any Reynolds number in the
supercritical Reynolds number region. It is noted that the boundary-
layer thickness increases very slowly with increase in distance from the
stagnation point. This behavior differs from that on an airfoil (see

p. 211 of ref. 9) on which the boundary-layer thickness ilncreases rapidly
frcm its value at the stagnation point. It is also noted that the value

of -@“ at the stegnation point of the sphere is about 10 times as

large as that at the stagnatlion point of the airfoil having an WACA
64A010 section at zero angle of attack.

In figure 2 is shown the variation with X/c at R, = 4.7 x 106
of the boundary-layer Reynolds number Rg and of the boundary-layer
minimum critical Reynolds number Re e? the Reynolds number below whilch

very smell wave-like disturbances (Tollmien—Schlichting type of waves as
discussed. in ref. 9) are damped out. The Reynolds number Rg 1s obtalned

from the relation

ig)
RG""i;
0808
O,c v
= UBR,

(o))

Because U and GVRC are independent of R,, 1t is apparent that
Rg 1s directly proportional to JRC. Therefore, the valie of Rg at
any velue of R, 1s obtained by using

Ry . =’ R, . ()

(Re)Rc=l+.7xlo5 V7 x 16

The minimum critical Reynolds number RB c depends on the shape param-
2

eter K alone of the velocity profile. The values of Re;c are, there-

fore, obtained from figure 1 of reference 4. The parameter K 1s depend-

ent only on the velocity distribution outside the boundary layer and 1s

independent of R.; therefore, Ry . 1is independent of R,. Here, again,
2

the behavior of Rg eand Re c is different from that on an airfoil.
2
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(See ref. 4.) For the sphere the value of Rg increases linearly with

%[ for the smaller values of E/E. The values of Ry . remain almost
P

constant at first and then decrease at an increasing rate. For the air-

foil with an NACA 6LAQLO section and at zero angle of attack, Rg

Increases in a parabolic manner with x; and RB os after a sudden large

drop from its value at the stagnation point, remains almost constant to
the value of x where the pressure 1s st a minimum.

From equation (lh and figure 2 the value of R necessary for
neutral stability (Re = Ry c) at any value of %/3 oan be calculated.
The results are shown in figure 3. It 1s noted that at a Reynolds num-

ber of 4.7 x 106 the boundary layer 1s stable to about i/é = 1.25, or 720
from the stagnation point. In order to meke the boundary layer unstable
as far forward as 15° from the stagnation point, the Reynolds number has
to be increased to sbout 520 x 106. The reference Reynolds number Rc

is based on the radius of the sphere; the boundery layer over the forward

portion of a sphere is, therefore, highly stable at large Reynolds numbers
with respect to the Tollmien-Schlichting type of waves.

Because transition 1s often caused by roughness particles and because
the roughness Reynolds number Rh where

v

has been shown to be significant in determining whether a roughness par-
ticle causes transition (see, for example, ref. 10), roughness Reynolds
numbers were calculated. ¥For roughness particles small enough for the
veloclity 1n the boundary layer to vary linearly with distance in the
region between the wall and the top of the particle, the roughness

Reynolds number is
éu:) 52
W

_ Uph _ (Bs'r_

v v

then,



NACA ™ 4350 13

- - 2
- Ufh _ Uh fRg
8y ]
and because 6 = _E, then
Re
Ry = h2Re” /2 '}I—; (152)

Because U, f, end Z are independent of h and Rq, it follows that
2 and as Rc3/2. BEquation (15a) can also be written as

R uf
— B = = 15b)
n2R /2 |z (

Because the quantity Uf/ \(E depends only on the pregsure distribution,

Rh varies as h

R
h
a plot of the gquantity — 37z enables Ry to be calculated rapidly
n2R

c
for any velue of R, and h for whieh the assumption of small height

is valid._ In connection with the assumption of smell height it is noted
that if h = 0 the error in U, varies from sbout -20° pereent for a

veloclty profile near separation to sbout 1k percent for the plane
stagnation-point wveloelity profilei the error is zero for the flat-plate
velocity profile. If, however, h = 28, then the error in Eh varies

from ebout -30 percent to about 30 percent for the same velocity profiles;
the error is less than 2 percent for the flat-plate velocity profile. It
is, thus, advisable that h not exceed © wunless the pressure gradient
is almost zero; In this case h can be slightly larger than 26. The

R
variation of = ]33 5 with X/€ 1is shown in figure 4. For any fixed
c

height &k 1t is apparent that the maximum roughness Reynolds number occurs
at a velue of X/€@ of sbout 1.0, or sbout 57° from the stagnation point.
In order to give a clea.rez impression, figure 5 shows the dependence of Ry
on Eﬁ? for g value of h of 0.005 inch on a sphere of 60-inch radius at
R, = 4.7 x 106.

Figures 1 to 4 ellow the boundery-lasyer momentum thickness s stability,
and roughness Reynolds number to be repidly estimated for any sphere at any
Reynolds mumber. These figures and figure 6, which gives the variation of
the velocity-profile shape parameter K with X/c, can be used with the
aid of references 3 and 4 to calculate all the other boundery-layer
quentities.
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Disk

In order to investigate the effect on the various boundary-lasyer
parameters of an increase iIn bluntness, the extreme caese of the flow
against a disk was lnvestigated. Because no veloclity distributions U(x)
seem to be gvallable for a disk, an approximate distribution was obtained
by combining theoretical results with & measured distribution of U on
the face of a plate of infinite span and perpendlicular to the stream. The
assumptlion was made that, at the same value of x,

U U
@), - (®). s)

The theoretical expression for Uy from reference 7 is

N
"

Ud=_

L P

and the theoretlcal expression for Ub from reference T 1s

_ pd
U, = Vg
Thus,
(U \ _»
%) " F
and
Ua,e =20, 4 (17)

The values of U?,a used were obtained from the experimental values

given in figure 1 of reference 11. The variation of the approximate

velocity distribution (%L) » or Ug, with x[d over the face of a disk
»/d

perpendicular to the stream is shown in figure 7. A comparison of this

velocity distribution with the calculated velocity distribution over the

front face of the more forward of the two disks that are separated by a

cavity (see table IIT end p. 106 of ref. 12) indicates that the velocity

distribution shown in figure T is probably & good-enough approximation



NACA TN L4350 o

to the actual velocity distribution to allow the main points to be shown
by the boundary-layer analysis. In order to calculate the boundary-layer
quantities of interest, a different and more rapid, although more approxi-
mate, method was used to integrate the momentum equation for the disk.

The method conslsts in obtaining an integrated form of the momentum equa—
tion. The momentum equation (eq. (2)) can be written as

dz . 27 dr _ 2 5*¥\| _ -
d_x_+?&-.ﬁ[f-kl-k(2+e—)]_o (18)

The quantity k 1s related to Z by the definition

k=273
ax

f =g|:l+K<l -%):l

g2(K+ 1) - fk; -k =0

From the relations

and

(from ref. 4) it follows that

dz GE (19)
g e
Now, let
B N
1-%X\=
( 6) *
jt—
g =b
g - kja=¢C (k; essumed to be constent)
. t (20)
& .3
C
*
2+%=A
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wvhere =a, b, C, d, e, and A are constants. When the definition
of k, the expression for f from equation (19), and the definitions
from eqpation (20) are substituted into equation (18), the result is

dax dx U dx U

95+22.E'dr+A'ddU:l &l -x) (21)

In this equation aﬁ/e, g, end k; are assumed to be constant. Equa.-

tion (21) is linear in 2 and is first order. Integration of equa-
tion (21) gives

(o]

x -d)- 2 2(A-d)
z=;—au—2%-_az(e-kl) j;orzuz(‘“-d)lax+zorou (22)

When use is made of the fact that U = 0 at the stagnation point
(x = 0) and that Z = o°R o equation (22) becomes

1 * 2pa-a)-1 12
eﬁ:F\Ee(e-kl)—/; r d.% (23)

In order to find the value of (Gfﬁg)t, note that near x =0 the

approximate relations U = (%%)tx and r = x are valid. Equation (23)

can then be integrated with the result that

Ny ™
(em)t V(%Xl_l)t(A - ; + 1) &)

Equation (24) indicates that, in the region in which the relations
U= (dU)tx and r = X are approximetely velid, the boundary-lasyer thick-
ness 1s approximately constant. It is clear that in this region GJE; is

proportional to 1 In figure 8 1s shown the variation of EJE; with
¢

dx /¢

%/ calculated by use of equations (23) and (24k) together with k) =

and stagnation-point values for A - @ and e; these values are



Ul

NACA TN L4350 17

A - d = 3.3407
(25)
e = 0.23002

The varlation of the boundary-layer Reynolds number Rg and the critical
Reynolds number Rg . Wwith i/E is shown, respectively, In figures 9
2

and 10. The values of Re,c were calculated by flrst computing the
values of k from

au
k=2 =
z dx

where 2 = eaRc, then by reading the value of K for each value of k

from & large-sizedfplot of K against k, and then by reading the value
of Re c from a large-sized plot of Re,c against K. Small plots of
2

K against k and of Re,c against K are given in reference k.

The most striking results are that the boundary-layer thickness is
greatest at the stegnation point and decreases with an Increase in dis-
tance from thls point and that the boundary layer is completely stable

at a Reynolds number of k.7 X 106, based on the radius of the disk. The
smalliest Reynolds number for which the boundary layer will first become

unstable is about 720 X 106; the first unsteble point will occur at sbout
x = 0.75. 1t is apparent that the boundary layer on & disk is very sta-
ble with respect to the Tollmien-Schlichting type of waves.

In order to investigate the variation of roughness Reynolds number

R
. h
the disk, the ntitg was calculated. The resulits are
over e 5 qua. A h——57§ -
Re

shown in figure 11. Imn figure 12 is shown the dependence of Ry on i/E
for a value of h of 0.005 inch on & disk of 60-inch radius at

R, = 4.7 x 100. A comparison of figure 12 with figure 5 shows that the
maximum value of Ry, produced on & disk is less then that produced on a

sphere when the roughness height is the same for disk and sphere. A com-
perison of figures 5 and 12 also indicates that a roughness of given height
produces a given roughness Reynolds number over & gresbter portion of the
sphere than of the disk. This result follows from the fact that, for a
given height of roughness and with the sphere and disk having the same diam-
eter and Reynolds number, the maximum roughness Reynolds number on the
sphere 1is larger than that on the disk and occurs near EfE = 1.0 (near 57°
from the stegnation point} on the sphere but at the edge of the disk. If
the same roughmess height is present on the sphere and disk and if the ref-~
erence Reynolds number is increased, a critical velue of Rp wlll occur at
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a lower reference Reynolds number on the sphere than on the disk and will
occur farther forward on the sphere than on the disk. (See ref. 10 for
informetion concerning critical values of Rp.)

ACCURACY OF RESULTS

- In order to determine the accuracy of equation (23), the quantity
2 e for the sphere was calculated for kl = 0 and with stagnation-
> -

polnt values of A - d and e; in figure 13 the results are compared with
the results of the step-by-step lntegration of the momentum equation for
the sphere. The asgreement is very good not too near the separation point.

For small values of E/E it is difficult to compute accurate values of

%vﬁg by the use of equation (23) because both numerator and denominator
c

become very small. In this region it is advisable to make use of equa-

tion (24) as an aid in obtaining values of E{E;.
g

If the values of A - d and e for a flat plate parallel to the
flow (%g = 0) are used, the values of A - d and e, respectlively, are then

A -4d=73.5
and
e = 0.2145 (k, = O)

With this value of A - & and the fact that r = sln x and U = % sin x,

equation (23) can be integrated in closed form for the sphere with the
result that

0.53492 |105 _ _ cos x< Te o T a1y 5 35 atnds 4 10O )J
e = X - ==lsin'x + sin’x + == sin‘x + —= sin x
Ja; (sin x)h'5[;8h 8 6 N _ 2k 48 _

1/2

(26)

A different closed-form integral of equation (23), which is glven in refer-
ence 1, can be obtained from equation (23) by letting
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A-d=3

and
e = 0.2020 (kl = o)

The results of equation (26) are also shown in figure 13. Better agree-
ment 1s obtained with the more exact step-by-step method of integration
if the stagnation-point values of A -4 and e eare used in & region
of falling pressure. Therefore, the values of equation (25) are used
together with equation (23) to calculate the boundsry-layer parameters
on the disk.

It may be worthwhile to note that equation (23) for the estimation
of the boundery-layer momentum thickness is general in the sense that the

constants e, A - &, and kl are arbitrary. Therefore, the accuracy

of & result can be improved by choosing velues of the constants that are
appropriate for the type of pressure distribution under consideration.

(see teble 2 of ref. 3 for suitable values.) One example of the effect
of the choice of the constants is shown in figure 13. By making use of
an average value of kl, equation (23) also permits a rough estimate to

be made of the effect on the boundary-layer thickness of flow into or
out of the surface.

An indication of the accuraecy of the calculated values of the
boundary-lsyer thickness on both the sphere and the disk can be obtained
from the exact solution for the boundary layer at the stagnation point
of a body of revolution at zero angle of attack. This exact nondimen-
sional velocity profile is lmown to be the same as the velocity profile

on the wedge with f = (p. 129 of ref. 9). Following the notation of
reference 2 and letting B = %. glves

-

2]

@), e

or, with (see table II of ref. 2)

[fm' Fr(l - F‘)d{] = 0.3502
V0 B=

Fr(1 - F')dY:I

B=%

o] [

the result is
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0.24T6
(e Rc)t = ___;Z_ (27)

The result obtailned from substituting kl = 0 and stagnation-point values
fram equation (25) into equation (24) is

o), - 222 (28)
B

The error in equation (28) is about 7.5 percent. From this result it
seems reasonable to infer that in the region of falling pressure the
boundary=-layer thickness, boundary-layer Reynolds number, and roughness
Reynolds number are probably accurate to within approximately 10 percent.

When, however, the accuracy of the critical Reynolds number Rg o
b4

is examined, the conclusion 1s reached that the calculated values of the
critical Reynolds numbers can easily differ from the correct values by as
much as 100 percent. Thus, from table II of reference 2 the value 2,662
is obtained for Re,c at the stagnation point. The value of Re,c

obtained from the present analysis is 1,650, a difference of about 60 per-
cent. Both calculations of Re,c use the rapid method employed in refer-

ence 13%; the difference in the two values of Ry o 1s caused by the dif-
2

ferent velocity profiles: one is the exact and the other is the approximate
Schlichting profile. When 1t is noted that the rapid method of reference 13
ylelds approximate answers, the conclusion is reached that the values of
Re,c given in the present analysis can easlly differ from the correct

values by as much as 100 percent. The conclusions reached in the analysis
concerning the stabllity, however, still remain the same in a qualilitative
sense. -

CONCLUDING REMARKS

The calculations for the sphere show that the boundary layer at the
stegnetion point of a sphere is much thicker than that on an alrfoil,
that the boundary-layer thlckness increases very slowly wlth an increase
in distance from the stagnation point, that the boundary layer over the
forward portion of & sphere is highly stable at large Reynolds numbers
wlth respect to the Tollmien-Schlichting type of waves, and that rough-
ness of & glven height produces the largest roughness Reynolds numbers
at about 5T7° from the stegnation point.
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The calculations for the disk show the unusual result that the
boundary-layer thickness is greatest at the stagnation point and decreases
with an increase in distance from thils point, that the boundary layer is
extremely steble with respect to the Tollmien-Schlichting type of waves,
and that roughness of a given height produces a given roughness Reynolds
number over a smaller portlon of the disk surface than over the sphere
surface.

Langliey Aeronauticel Laboratory,
National Advisory Committee for Aeronasutics,
Iangley Fileld, Va., June 9, 1958.
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Figure l.- Variation of nondimensional boundary-layer thickness G:\E wvith X/¢ for a sphere.
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Figure 3.~ Value of Reynolds number Rc for neutral stability (Re = Rg c) .
* ’
at any value of i/E on a sphere.
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